پژوهشگران دانشگاه اسفاکس تونس و دانشگاه آیکس مارسی فرانسه در پژوهشی بدیع که به تازگی گزارش آن منتشر شده است فرآیندی جدید برای اصلاح امواج مغزی در نقشه مغزی QEEG بیماران مبتلا به صرع ابداع نمودند که میتواند حمله صرع را می توان در بیماران پیشبینی کند.
روش پژوهش
پژوهشگران در پژوهش حاضر به ترکیب تبدیل ساکن امواج (SWT) بعنوان روش بهینه فیلترکردن امواج، و نقشه برداری زمانی در تنظیم مجدد سهمی پویا پرداختند.
هدف از این فرآیند کاربرد پردازشهای زمان واقعی برای پیشبینی حمله صرع بود. SWT بر اساس نوسانات و خیزشهای گذرای امواج به شکل جداگانه محاسبه شد. پلتفرمهای مورد استفاده شامل MATLAB، HDL و EEGlab بودند. دادههای امواج مغزی، از سیگنالهای واقعی مغزی افراد دارای صرع مقاوم به دارو بودند.
۳ کانال با فرکانس نمونه گیری ۲۵۶ هرتز مورد استفاده قرار گرفت و امواج گاما در باندهای ۴۵، ۵۵ و ۸۵ هرتز ثبت شدند. نتایج محاسبات ۹۸۴ بار شبیه سازی شدند.
نتایج نشان دادند:
- محاسبه SWT برای نوسان امواج، خیزشهای گذرا و ترکیب این دو، توان پیشبینی مطلوبی برای حملات صرع بویژه در بیماران مقاوم به دارو دارد.
- برای پیشبینی حملات صرع، صرفاً می توان با محاسبه SWT امواج گاما به نتایج مطلوب و بهینهای دست یافت.
- با افزودن بسته نرمافزاری محاسباتی طراحی شده پژوهشگران به سیستمهای QEEG، براحتی میتوان در یک بازه زمانی امن به شناسایی و پیشبینی وقوع حملات صرع، بویژه در افراد مقاوم به دارو، پرداخت. این امر کمک شایانی به کاهش حوادث و افزایش ایمنی بیماران و همچنین، کاهش مشکلات حین نوروتراپی بیماران دارای صرع می نماید.
Integration of stationary wavelet transform on a dynamic partial reconfiguration for recognition of pre-ictal gamma oscillations
Abstract
Introduction
To define the neural networks responsible of an epileptic seizure, it is useful to perform advanced signal processing techniques.
In this context, electrophysiological signals present three types of waves: oscillations, spikes, and a mixture of both.
Recent studies show that spikes and oscillations should be separated properly in order to define the accurate neural connectivity during the pre-ictal, seizure and inter-ictal states.
Retrieving oscillatory activity is a sensitive task due to the frequency overlap between oscillations and transient activities.
Advanced filtering techniques have been proposed to ensure a good separation between oscillations and spikes.
Aim of the Study
It would be interesting to apply them in real time for instantaneous monitoring, seizure warning or neurofeedback systems.
This requires improving execution time. This constraint can be overcome using embedded systems that combine hardware and software in an optimized architecture.
Method of the study
We propose here to implement a stationary wavelet transform (SWT) as an adaptive filtering technique retaining only pre-ictal gamma oscillations, as validated in previous work, on a partial dynamic configuration.
Then, the same architecture is used with further modifications to integrate spatio temporal mapping for an early recognition of seizure build-up.
Results
Data that contains transient, pre-ictal gamma oscillations and a seizure was simulated. the method on real intracerebral signals was also tested. The SWT was integrated on an embedded architecture.
This architecture permits a spatio temporal mapping to detect the accurate time and localization of seizure build-up, while reducing computation time by a factor of around 40.
Embedded systems are a promising venue for real-time applications in clinical systems for epilepsy.
Keywords
Biomedical engineering, Neurology, epilepsy seizures.
لینک منبع پیشنهادی برای مطالعه بیشتر (further reading)
advanced signal processing techniques. In this context, electrophysiological signals
present three types of waves: oscillations, spikes, and a mixture of both. Recent
studies show that spikes and oscillations …
(در صورت جذابیت و علاقمندی به موضوع، مطلب را برای دیگران نیز بازنشر فرمایید).
کانال تلگرام